
[technology + passion] - risk

Mitigating Cyber Risks
related to Open Source Software

2sdgc.com 2

Points to be Discussed

 Statistics

 Advantages

 Open-Source Risks

 Best Practices

3sdgc.com 3

Some Statistics ….

• As many as 93 percent of
organizations use open source
software and 78 percent run part or
all of their operations on it, according
to The Tenth Annual Future of Open
Source Survey

• According to another survey, 97% of
developers responded that they use
open source components in their
applications, with over 87% stating
that they use it heavily.

• According to Synopsys, 99% of
commercial databases contain at least
one open source component, and
nearly 75% of these codebases contain
open source security vulnerabilities.

• The overall market
for open source is
projected to stand at
$21.6 billion in 2020
and then grow by over
30 percent by 2020,
reaching close to $33
billion a year.

Source: Statista

Statistics…

https://www.statista.com/statistics/270805/projected-revenue-of-open-source-software-since-2008/

5sdgc.com 5

Open Source – Advantages

• Generally free
• Continuously evolving and improving – fast fixes, integration
• Scalable and can be changed easily
• Less costly, low or no licensing fees
• Agile and customizable with real time improvements
• Easy to manage

www.sdgc.com

Open Source Risks

7sdgc.com 7

Risk #1 – Software vulnerabilities & fixes

• Bugs are resolved quickly due to community support, however,
information related to vulnerabilities is made public.

• This public information can be easily exploited by hackers.

• Eg. Equifax, Heartbleed etc.

8sdgc.com 8

Risk #2 – Security consideration in Open source software

• Open-source software comes with no claims
or legal obligations for security and
community support informing you how to
implement it securely may be lacking. The
developers responsible for creating software
are often not security experts and may not
understand how to implement best practices.

• Often open-source software includes or
requires the use of third-party libraries, pulled
in from package managers without
inspection.

9sdgc.com 9

Risk #3 – Warranties & IP infringement issues

• Open-source software does not come with any warranties as to its security, support,
or content. Although many projects are supported, they are done so by volunteers
and the development of them can be dropped without notice.

• There are over 200 types of licenses that can be applied to
open-source software, including Apache, GPL, and MIT.
Many of these licenses are incompatible with each other,
meaning that certain components cannot be used together
since you have to comply with all terms when using open-
source software. The more components you use, the more
difficult it becomes to track and compare all of the license
stipulations.

• What this means in practice is that if you use open-source
software that is found to contain code with infringed
rights, you can be held responsible for infringement.

10sdgc.com 10

Risk #4 – Untracked use of software

• Teams often have insufficient or non-existent review processes when it comes to which open-
source components are being used. Multiple versions of the same component might be used
by different teams or developers might be unaware of conflicting functionality or licensing.

• These issues can occur due to lack of
knowledge of software or security
functionality, lack of communication
between teams or team members, or
insufficient or absent tracking and
documentation protocols.

• Unlike third-party proprietary software,
which has built-in controls to prevent the
use of multiple or incompatible versions,
open-source components typically rely on
the user to verify proper use.

11sdgc.com 11

Risk #5 – Operational challenges

• Primary concern from an operational standpoint is the failure to track open source
components and update those components as new versions become available.
These updates often address high-risk security vulnerabilities, and delays can cause
a catastrophe, as was the case in the Equifax breach.

• Another issue is abandoned projects that
perhaps begin with much active involvement
from the open source community but
eventually fade away as nobody updates them
anymore. If such projects make their way into
apps in the form of libraries or frameworks,
your developers are responsible for fixing
future vulnerabilities.

www.sdgc.com

Best Practices

13sdgc.com 13

Way Forward…

sdgc.com confidential 13

14sdgc.com 14

Practice #1 – Assess the need

• Conduct a thorough Risk assessment of your
environment to understand the inherent risks,
need for the open source software, which
software to be used and where it needs to be
used.

• Use selection criteria to assess the software
before use. The factors to be considered can be -
Total Cost of Ownership, Technical support
availability, scalability of solution, embedded
security.

• Open Source Software (OSS) should be qualified
after conducting relevant usability, stability and
security tests. Only pre-approved and qualified
OSS should be used and deployed within the
organization.

15sdgc.com 15

How to choose – Questions to ask?

• Does it do what you want?
- Does the software do what you want it to do? What are your requirements?

• Is the software good for its role?
– Investigate prior uses of the software. Has anyone used it in the manner you want to use it?

• Is the software actively used, developed and supported?
– The importance of an active community around the software shouldn't be underestimated. Check out the

mechanisms for how support is provided: support forums, direct email support and issue trackers, and
investigate whether they are actively used and have a good level of response to queries and issues.

• Does the software have a future?

• How is the software provided?
- In most cases, good user and developer documentation is a must.

- Are the prerequisites of the software well defined and
straightforward to obtain and deploy, and do they fit your
own requirements?

• Choosing the right version

16sdgc.com 16

Practice #2 - Governance

• Organizations should develop a
comprehensive policy governing the
usage of OSS.

• The policy should cover an acceptable
usage of OSS and the acceptable risk
appetite for OSS.

• Risk Assessment should on a minimum
cover risks related to license
requirements, operations (support for
the software and stability of the
software) and security (vulnerabilities
and known exploits)

17sdgc.com 17

Practice #3 – Open source inventory & documentation

• Maintain a detailed inventory of OSS used within the organization
detailing instances (number / quantity) of use, version etc.

• Where OSS is used as a component of your in-house application, a
data call should be performed to determine what components are
OSS and what versions are currently is use.

• The inventory should include libraries, frameworks, middleware and
applications. Maintain a profile of each OSS to include the code’s
origin, where to get updates, and how often the community releases
new versions.

• A comprehensive documentation of the components used should be
maintained. This includes libraries, frameworks, middleware and
applications.

• Maintain a repository of the source code of OSS deployed within the
organization

18sdgc.com 18

Practice #4 – Installation of OSS

• Any OSS installed / deployed should adhere to the organization’s
system installation procedure. This should ensure that:

• Only whitelisted OSS is deployed in the organization.

• All deployments are vetted and approved through a formal
system deployment / change management process.

• All deployments are inventoried in the asset register.

• Only authorized individuals such as the system administrators
should install / deploy OSS.

• Use OSS from reliable and trusted sites.

• Wherever possible prefer source code to binaries.

• Examples of trusted sites as recommended by Open Source
Initiative include freshmeat.net, sourceforge.net, osdir.com,
developer.berlios.de and bioinformatics.org f. Ensure that the
OSS is tested and updated with the latest patches.

19sdgc.com 19

Practice #5 – Software security testing

• Integrate security within your build (Jenkins,
Bamboo, TeamCity, etc.)

– SAST

– DAST

• Create a test framework to automate checks

• Constantly check code

• Perform a security assessment to identify and patch
any known vulnerabilities in the OSS.

• For critical applications, it is recommended to do a
combination of an automated static analysis (source
code scanning) and dynamic analysis to find
vulnerabilities in individual applications and define
measures on how to fix them.

20sdgc.com 20

Practice #6 – Application hardening & Patch management

• As with any other software, the OSS should be
configured in a secure manner.

• The organization’s Patch Management process
should monitor and update patches released for the
OSS.
– Check the community associated with your open source

code.

– When a new vulnerability is identified, the organization
should explore possible mitigation strategies that can be
implemented until a patch is available.

– Once a patch is released, test the patch for stability and
applicability within your test environment prior deploying on
your production systems.

– Have a time bound approach to patch all vulnerable OSS in
place.

21sdgc.com 21

Practice #7 – Training of employees

• Enterprises should ensure that their developers have a general understanding of
cybersecurity, as well as the latest trends and updates. Your developers should be
able to identify common security issues that arise in open source code, if not fix
them.

• Similarly, the security team should be involved in the development process from the
early stages. Rather than making security an after-thought, it should be a priority
from the very beginning of a project.

22sdgc.com 22

Basic Principles of Open Source Management

•New vulnerabilities are
disclosed every day.
Assign resources to each
open source project used
in the critical applications

•Identify and assign
responsibility for
any existing security
risks in deployed
OSS

•Create lists of the
open source
projects used in
these applications

•Target your most
critical applications
for review.

Prioritize Baseline

MonitorTriage

23sdgc.com 23

sdgc.com 23

Open Source has its own pros and cons but with the emerging threat landscape and agile
environment, it is the need of the hour.

Although, whether to choose from open source or proprietary software is entirely based on
an organization’s business needs – Security, Scalability and Stability of the tool/software
should be analyzed with due diligence.

Open source is an excellent model that can be found in many of today’s projects. However,
to ensure secure open source code, you need to acknowledge the security risks that come
with open source software. You have to make sure that each of your open source
components is delivering value to the project and are secure.

www.sdgc.com

Thank You

Contact Details –

Meetali Sharma

meetalisharma81@gmail.com

www.meetalisharma.com

https://www.linkedin.com/in/meetali-sharma/

http://www.meetalisharma.com/
https://www.linkedin.com/in/meetali-sharma/

